Find the value of: (i) sin 75 Degrees (ii) tan 15 Degrees
Answers
Answered by
0
(i) sin 75°
sin(45+30)°
sin30cos45+sin45cos30
1/2×1/√2+1/√2×√3/2
1/2√2+3/2√2
1+√3/2√2
(ii) tan 15°
Clearly, tan15°=tan(45°-30°)
We know that,
tan(A-B)=(tanA-tanB)/(1+tanA.tanB)
So, tan15°=tan(45°-30°)
=(tan 45°-tan30°)/(1+tan45°.tan30°)
=[{1-(1/√3)}/{1+(1)(1/√3)}]
=(√3–1)/(√3+1)
Rationalising the denominator, we have,
Tan15°= {(√3–1)×(√3–1)}/{(√3+1)×(√3–1)}
=(3+1–2√3)/(3–1)
=(4–2√3)/2
=2-√3.
hope it helps you.....✌️
Similar questions