Math, asked by vm107308, 5 months ago

find the value of k 3k²=4(kx-1) ,if the root is equal​

Answers

Answered by Anonymous
8

Solution :

3k² = 4(kx - 1)

for quadratic equation are

b² + 4ac = 0

so, now

3kx² - 4 kx + 4 = 0

b² + 4ac = (-4k)² + 4 × 3k × 4 = 0

16k² + 12k × 4 = 0

16k² - 48k = 0

16k (k - 3) = 0

16k = 0 or k - 3 = 0

k = 0 or k = 3

value of k is (0 , 3)

Answered by Anonymous
16

 \sf \underline{Given \: } :

  • 3k² = 4(kx - 1) ,

 \sf \underline{ To  \: Find\: } :

  • find the value of k

 \sf \underline{ Solution \: \: } :

 \sf   : \implies {3k}^{2}  = 4(kx - 1)  \\  \\  \sf   : \implies 3k {x}^{2}  + 4kx - 4 = 0 \\  \\  \sf   : \implies \: 0 = 0 \\  \\  \sf   : \implies 0 =  { b}^{2}  - 4ac

The roots are equal therefore  b²- 4ac = 0

Suthe value of b substitute values of a, b and c.

 \sf :  \implies \: { - 4k}^{2}  - 4 \times 3k \times 4 = 0  \\  \\ \sf :  \implies \:16k - 48k = 0 \\  \\ \sf :  \implies \:16k(k  - 3) = 0 \\  \\ \sf :  \implies \:16k = 0  \: or \: k  - 3 \\  \\ \sf :  \implies \:k = 0 \: or \: k = 3 \\  \\

but k cannot be zero as 'a' term of quadratic equation is never zero.Therefore k = 3

\rule{180}{1.5}

\boxed{\begin{minipage}{5.5 cm} {$\bigstar\: \textsf{For a Quadratic Polynomial :}}\\\\ {\qquad\sf p(x) = ax$^\sf2$ \sf + bx + c}\\\\\sf   \: D=   {b}^{2}  - 4ac \\  \\ \sf \: x =  \frac{ - b  \pm \: \sqrt{ {b}^{2}  - 4ac}  \: }{2a}  \\  \end{minipage}}

Similar questions