Physics, asked by nikki1731, 1 month ago

find the value of k....

Attachments:

Answers

Answered by kinzal
3

Answer :

Diagram :

 (-6,-2) \: \: \: \: \: \: \: \:\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: (30,16)

•-------------•-------------•

 \sf  A \: \: \: \: \: \: \: \: \: \: \: \: \:  \: \: \: \: \: \:  p \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \:  \: \: B

Solution :

Here using the section formula, if a point (x,y) divides the line joining the points  (x_1 , y_1) and (x_2, y_2) in the ratio m : n = k : 1 = AP : PB

Then,

 \sf (x,y) = \bigg( \frac{mx_2 + nx_1}{m + n} , \frac{my_2 + ny_1}{m + n } \bigg) \\

The ratio is k : 1,

And

 x_1 = -6

 x_2 = 30

 y_1 = -2

 y_2 = 16

Now,

Coordinates Of Point P ( x , y )

 \sf = \bigg( \frac{mx_2+ nx_1}{m +n } , \frac{my_2 + ny_1}{m + n } \bigg)\\

m = k and n = 1

 \sf = \bigg( \frac{k(30) + (-6)}{k +1} , \frac{k(16) + 1(-2)}{k + 1} \bigg) \\

 \sf = \bigg( \frac{30k - 6 }{k + 1} , \frac{16k - 2 }{k + 1} \bigg) \\

Now, as given in question

P lies on the line x + y - 4 = 0

We have , x and y

x =  \sf \bigg( \frac{30k - 6 }{k + 1} \bigg) \\

y =  \sf \bigg( \frac{16k - 2 }{k + 1} \bigg) \\

Now we have to put this values in this equation : x + y - 4 = 0

x + y - 4 = 0

 \sf \bigg( \frac{30k - 6 }{k + 1} \bigg) + \bigg( \frac{16k - 2 }{k + 1} \bigg) - 4 = 0\\

 \sf \bigg( \frac{30k - 6 }{k + 1} \bigg) + \bigg( \frac{16k - 2 }{k + 1} \bigg) = 4 \\

 \sf \bigg( \frac{30k - 6 + 16k - 2}{k + 1} = 4 \\

 \sf \bigg( \frac{46k - 8 }{k + 1} = 4 \\

 \sf 46k - 8 = 4(k +1) \\

46k - 8 = 4k + 4

46k - 4k = 8 + 4

42k = 12

k =  \sf \frac{12}{42} \\

 \sf \red{\underline{\underline{k = \frac{2}{7}}}} \\

I hope it helps you ❤️✔️

Similar questions