Math, asked by karankuljit171payxrb, 1 year ago

find the value of k for which of the quadratic equation kx^2-3kx+9=0 has real equal roots

Answers

Answered by vikram991
0
here is your answer OK

Look...

We know that cos thita = sin(90-thita)

now look at the ques.

Cos 48 degree - sin 42 degree

= cos(90deg. -42deg.) - sin42 deg.

= sin42 deg. - sin 42 deg.

= 0
Answered by BrainlyConqueror0901
11

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Value\:of\:k=0\:and\:4}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{ \underline \bold{Given : }} \\   \tt{ : \implies kx^{2}  -3kx + 9 = 0 }\\  \\ \red{ \underline \bold{To \: Find : }} \\    \tt{: \implies  value \: of \: k = ?}

• According to given question :

  \tt{ : \implies kx^{2} -3kx + 9= 0} \\   \\   \tt{\circ  \: a = k} \\ \\  \tt{\circ \: b = -3k}\\\\ \tt{\circ \:c = 9}\\ \\   \bold{Discriminant \:  = 0} \\  \\     \tt{:  \rightarrow \: D \implies  {b}^{2} - 4ac = 0 } \\  \\    \tt{: \implies  {b}^{2}  - 4ac = 0} \\  \\  \text{Putting \: the \: given \: values} \\   \tt{: \implies (-3k)^{2}  -  4\times k\times 9= 0 } \\  \\    \tt{: \implies \:  9{k}^{2}  -36k= 0 } \\  \\  \tt{ : \implies \:   9({k}^{2}   - 4k) = 0 } \\\\ \tt{: \implies k(k-4)= 0} \\  \\   \tt{: \implies k= 0\:and\:4} \\  \\   \green{\tt{: \therefore k =0\:and\:4}}

Similar questions