Math, asked by kanshar4204, 1 year ago

Find the value of k, ​ ​for which one root of the quadratic equation kx2​ - 14x+ 8 = 0, is six times the other.

Answers

Answered by aami21
6

{\mathscr{\red{\bold{Heya! }}}}

✒✒✒✒✒✒✒✒✒✒✒✒✒✒

{\underline{\bold{Given:-}}}

 \alpha  +  \beta  =  - \frac{ - b}{a}  \\  6 \beta  +  \beta  =  \frac{ - ( - 14)}{k}  \\ 7 \beta  =  \frac{14}{k}  \\  \beta  =  \frac{2}{k}

from eq(1),

 \alpha  \beta  =   \frac{c}{a}  \\ 6 \beta  \times  \beta  =  \frac{8}{k }  \\ 6 { \beta }^{2}  =  \frac{8}{k}  \\ 6 \times \frac{ {2}^{2} }{ {k}^{2} }  =  \frac{8}{k}  \\ 6 \times  \frac{4}{ {k}^{2} }  =  \frac{8}{k}  \\ \frac{24}{ {k}^{2} }  =  \frac{8}{k}  \\  \frac{24}{ {k}^{2} }  \times  k = 8 \\  \frac{24}{k}  = 8 \\ k =  \frac{24}{8}  \\ k = 3

hence we get the value of k as,

{\boxed{\blue{\bold{3}}}}

✔⬆⬆⬆⬆⬆⬆⬆⬆⬆⬆⬆⬆⬆⬆⬆⬆⬆⬆⬆⬆⬆⬆⬆⬆⬆⬆✔

{\mathscr{\red{\bold{Thanks! }}}}

Answered by pinquancaro
2

The value of k is 3.

Step-by-step explanation:

Given : One root of the quadratic equation kx^2-14x+ 8 = 0, is six times the other.

To find : The value of k ?

Solution :

The roots of quadratic equation ax^2+bx+c=0 with roots \alpha and \beta satisfy

Sum of roots  \alpha  +  \beta  =-\frac{b}{a}

Product of roots \alpha  \beta  =   \frac{c}{a}

One roots is 6 time other i.e. \alpha=6\beta

Here, a=k, b=-14 and c=8

Now, 6\beta+ \beta=-\frac{-14}{k}

7\beta=\frac{14}{k}

\beta = \frac{2}{k} ....(1)

and 6 \beta \times \beta=\frac{8}{k}

6 {\beta }^{2}  =  \frac{8}{k}

6 \times \frac{ {2}^{2} }{ {k}^{2} }  =  \frac{8}{k}

6 \times  \frac{4}{ {k}^{2} }  =  \frac{8}{k}

\frac{24}{ {k}^{2} }  =  \frac{8}{k}

\frac{24}{ {k}^{2} }  \times  k = 8

\frac{24}{k}  = 8

k=\frac{24}{8}

k = 3

Therefore, the value of k is 3.

#Learn more

For what values of k the quadratic equation kx2-14x+8=0 is 2

https://brainly.in/question/8133957

Similar questions