Math, asked by mehak69, 1 year ago

find the value of K for which quadratic equation ( k-2)x square +2(2x-3) x + (5k -6)=0 has equal roots

Answers

Answered by LivetoLearn143
0

\large\underline{\sf{Solution-}}

Given that the quadratic equation

\rm :\longmapsto\:(k - 2) {x}^{2}  + 2(2k - 3)x + (5k - 6) = 0

has equal roots.

So, Discriminant = 0.

Here,

\rm :\longmapsto\:a = k - 2

\rm :\longmapsto\:b = 2(2k - 3)

\rm :\longmapsto\:c = 5k - 6

So,

\rm :\longmapsto\: {b}^{2} - 4ac = 0

 \rm :\longmapsto\:{\bigg(2(2k - 3)\bigg) }^{2}  - 4(k - 2)(5k - 6) = 0

\rm :\longmapsto\:4( {4k}^{2}  + 9 - 12k) - 4( {5k}^{2}  - 6k - 10k + 12) = 0

\rm :\longmapsto\:{4k}^{2}  + 9 - 12k -{5k}^{2}   +  6k  + 10k  - 12 = 0

\rm :\longmapsto\: -  {k}^{2} + 4k - 3 = 0

\rm :\longmapsto\: {k}^{2}  -  4k + 3 = 0

\rm :\longmapsto\: {k}^{2}  -  3k  - k+ 3 = 0

\rm :\longmapsto\:k(k - 3) - 1(k - 3) = 0

\rm :\longmapsto\:(k - 3)(k - 1) = 0

\bf\implies \:k = 1 \:  \:  \: or \:  \:  \: k = 3

Similar questions