Math, asked by nandhinimcivil8111, 1 year ago

find the value of k for which the following system of equation has no solution. 3x-4y+7=0,kx+3y-5=0

Answers

Answered by pinquancaro
108

Answer:

The value of k is k=-\frac{9}{4} and k\neq-\frac{15}{7}

Step-by-step explanation:

Given : Equation 3x-4y+7=0,kx+3y-5=0

To find : The value of k for which the following system of equation has no solution.

Solution :

When the system of equation is in form ax+by+c=0, dx+ey+f=0 then the condition for no solutions is

\frac{a}{d}=\frac{b}{e}\neq \frac{c}{f}

Compare and substituting the values,

\frac{3}{k}=\frac{-4}{3}\neq \frac{7}{-5}

\frac{3}{k}=\frac{-4}{3}\neq \frac{7}{-5}

Taking 1,  \frac{3}{k}=\frac{-4}{3}

3\times 3=-4\times k

9=-4k

k=-\frac{9}{4}

Taking 2,  \frac{3}{k}\neq \frac{7}{-5}

3\times -5\neq7\times k

-15\neq7k

k\neq-\frac{15}{7}

Therefore, The value of k is k=-\frac{9}{4} and k\neq-\frac{15}{7}

Answered by mysticd
44

Answer:

 value \: of \: k = \frac{-9}{4}\:and \: k ≠\frac{-15}{7}

Step-by-step explanation:

 Compare\: given\: two\\equations \: 3x-4y+7=0,\:kx+3y-5=0\\with\:a_{1}x+b_{1}y+c_{1}=0,\\a_{2}x+b_{2}y+c_{2}=0,we\:get

a_{1}=3,\:b_{1}=-4,\:c_{1}=7;

a_{2}=k,\:b_{2}=3,\:c_{2}=-5;

\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}≠\frac{c_{1}}{c_{2}}

( Given no solution )

\frac{3}{k}=\frac{-4}{3}≠\frac{7}{-5}

i)\implies \frac{3}{k}=\frac{-4}{3}

\implies 3\times \frac{3}{-4}=k

\implies \frac{-9}{4}=k

ii))\frac{3}{k}≠\frac{7}{-5}

\implies \frac{-5}{7}\times 3 ≠ k

\implies \frac{-15}{7}≠k

Therefore,

 value \: of \: k = \frac{-9}{4} \: and \: k ≠\frac{-15}{7}

•••♪

Similar questions