Math, asked by pawanrajsingh8208, 1 year ago

Find the value of k for which the given quadratic equation has real and distinct roots kx^2+2x+1+0

Answers

Answered by AnushkDev
7
Here Is Your Answer.. Hope It Helps..
Attachments:
Answered by BrainlyConqueror0901
10

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Value\:of\:k<1}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{ \underline \bold{Given : }} \\   \tt{ : \implies kx^{2}  +2x + 1 = 0 }\\  \\ \red{ \underline \bold{To \: Find : }} \\    \tt{: \implies  value \: of \: k = ?}

• According to given question :

\tt{ : \implies kx^{2}  +2x + 1= 0} \\   \\   \tt{\circ  \: a = k} \\ \\  \tt{\circ \: b = 2}\\\\ \tt{\circ \:c = 1}\\ \\   \bold{Discriminant \:  >0} \\  \\ \tt{:  \rightarrow \: D \implies  {b}^{2} - 4ac > 0 } \\  \\  \tt{: \implies  {b}^{2}  - 4ac > 0} \\  \\  \text{Putting \: the \: given \: values} \\   \tt{: \implies (2)^{2}  -  4\times k \times 1>0 } \\  \\    \tt{: \implies \:  4  -4k >0 } \\  \\  \tt{ : \implies \:   4(1   - k) > 0 } \\\\ \tt{: \implies 1-k> 0} \\  \\   \tt{: \implies k< 1} \\  \\   \green{\tt{\therefore k <1 }}

Similar questions