find the value of k for which the points (3k+1,k) ; (k+2,k-5) ; (k+1,-k) are collinear.
Answers
Answered by
3
Given points (3k+1,k),(k+2,k-5),(k+1,-k)
Now m1= k-5-k/k+2-3k-1
= -5/-2k+1
= 5/2k-1
Now m2= -k-k+5/k+1-k-2
= 5-2k/-1
= 2k-5
Now on collinear condition slops r equal..
m1=m2
5/2k-1=2k-5
5=4ksq -12k +5
4ksq -12k=0
4k(k-3)=0
Ie k=0,3Ans
Now m1= k-5-k/k+2-3k-1
= -5/-2k+1
= 5/2k-1
Now m2= -k-k+5/k+1-k-2
= 5-2k/-1
= 2k-5
Now on collinear condition slops r equal..
m1=m2
5/2k-1=2k-5
5=4ksq -12k +5
4ksq -12k=0
4k(k-3)=0
Ie k=0,3Ans
Similar questions