Math, asked by thanu7581, 11 months ago

find the value of k for which the points with coordinates (2, 5),(k,11/8)and (4,6) are collinear​

Answers

Answered by ihrishi
4

Step-by-step explanation:

Since given points are collinear,

Therefore their SLOPES will be equal.

Hence,

 \frac{5 -  \frac{11}{8} }{2 - k}  =  \frac{ \frac{11}{8} - 6 }{k - 4}  \\  \implies \:  \frac{\frac{5 \times 8 - 11}{8} }{2 - k}  =  \frac{ \frac{11 - 8 \times 6}{8}}{k - 4}   \\ \implies \:  \frac{\frac{40 - 11}{8} }{2 - k}  =  \frac{ \frac{11 - 48}{8}}{k - 4}   \\ \implies \:  \frac{\frac{29}{8} }{2 - k}  =\implies  \frac{ \frac{ - 37}{8}}{k - 4}   \\  \frac{29}{8(2 - k)}  =  -  \frac{37}{8(k - 4)}  \\ \implies\frac{29}{2 - k}  =  -  \frac{37}{k - 4}  \:  \\ \implies \: 29(k - 4) =  - 37(2 - k) \\  \implies \: 29k - 116 =  - 74  + 37 k \\ \implies \: 29k - 116 =  - 74  + 37 k \\  \implies \: 74 - 116 =  37 k -29k  \\  \implies- 42 = 8 k \\ \implies \: k =  \frac{ - 42}{8}  \\ \implies  \huge \fbox {k =  \frac{ -21}{4} }

Similar questions