Math, asked by sdfdsfs6348, 1 year ago

Find the value of k for which the quadratic equation 2 x square + kx + 2 is equal to zero has equal roots

Answers

Answered by patelhet34
1

Answer:

this is right answer

hope this helps you

Attachments:
Answered by BrainlyConqueror0901
1

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Value\:of\:k=\pm 4}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{ \underline \bold{Given : }} \\   \tt{ : \implies 2x^{2}  +kx + 2 = 0 }\\  \\ \red{ \underline \bold{To \: Find : }} \\    \tt{: \implies  value \: of \: k = ?}

• According to given question :

  \tt{ : \implies 2x^{2}  +kx + 2= 0} \\   \\   \tt{\circ  \: a = 2} \\ \\  \tt{\circ \: b = k}\\\\ \tt{\circ \:c = 2}\\ \\   \bold{Discriminant \:  = 0} \\  \\     \tt{:  \rightarrow \: D \implies  {b}^{2} - 4ac = 0 } \\  \\    \tt{: \implies  {b}^{2}  - 4ac = 0} \\  \\  \text{Putting \: the \: given \: values} \\   \tt{: \implies (k)^{2}  -  4\times2 \times 2= 0 } \\  \\    \tt{: \implies \:  {k}^{2}  -16 = 0 } \\  \\  \tt{ : \implies \:   ({k}^{2}   - 4^{2}) = 0 } \\\\ \tt{: \implies (k+4)(k-4)= 0} \\  \\   \tt{: \implies k=4\:and\:-4} \\  \\   \green{\tt{: \implies k = \pm 4 }}

Similar questions