Math, asked by ns2003, 1 year ago

Find the value of k for which the quadratic equation kx(x-3)+9=0 has equal and real roots.

Answers

Answered by siddhartharao77
216

Answer:

k = 4

Step-by-step explanation:

Given, Quadratic Equation is kx(x - 3) + 9 = 0.

⇒ kx² - 3kx + 9 = 0

On comparing with ax² + bx + c = 0, we get a = k, b = -3k, c = 9.

Given that the equation has real equal and real roots.

∴ D = 0

b² - 4ac = 0

⇒ (-3k)² - 4(k)(9) = 0

⇒ 9k² - 36k = 0

⇒ 9k² = 36k

⇒ 9k = 36

⇒ k = 36/9

k = 4


Hope it helps!

Answered by Anonymous
46

Given :

The  quadratic equation is : k x ( x - 3 ) + 9 = 0

                                             ==> k x² - 3 k x + 9 = 0

We need to find the value of "k" such that the equation has real and equal roots .

Comparing k x² - 3 k x + 9 = 0 with a x² + b x + c = 0 : -

                                                            ==> a = k............................(1)

                                                            ==> b = - 3 k..........................(2)

                                                            ==> c = 9..........................(3)

For an equation to have real and equal roots :

b² must be equal to 4 a c

We assume the value of k such that this equation has real and equal roots :

Thus :   [ see ( 1 ) , ( 2 ) and ( 3 ) ]  b² = 4 a c

                                                   ==> ( - 3 k )² = 4 × k × 9

                                                   ==> 9 k² = 9 × 4 k

                                                   ==> k² = 4 k  [ cancelling 9 both sides ]

                                                   ==> k = 4 [cancelling k both sides ]


The value of k was found to be 4.

Hope it helps you :-)


_____________________________________________________________________


Similar questions