find the value of k for which the roots are real and equal in equation:(k+1)x²-2(3k+1)x+8k+1=0 hence find the roots of the quadratic equation
Answers
Answer:
The roots of the given quadratic equation are
Step-by-step-explanation:
The given quadratic equation is ( k + 1 ) x² - 2 ( 3k + 1 ) x + 8k + 1 = 0.
We have given that, the roots of the quadratic equation are real and equal.
We have to find the value of k and the roots of the quadratic equation.
Now,
( k + 1 ) x² - 2 ( 3k + 1 ) x + 8k + 1 = 0
Comparing with ax² + bx + c = 0, we get,
- a = ( k + 1 )
- b = - 2 ( 3k + 1 )
- c = 8k + 1
We know that,
For real and equal roots, discriminant of the quadratic equation is zero.
∴ b² - 4ac = 0
⇒ [ - 2 ( 3k + 1 ) ]² - 4 * ( k + 1 ) * ( 8k + 1 ) = 0
⇒ ( - 6k - 2 )² - ( 4k + 4 ) * ( 8k + 1 ) = 0
⇒ ( - 6k )² - 2 * ( - 6k ) * 2 + ( - 2 )² - [ 4k ( 8k + 1 ) + 4 ( 8k + 1 ) ] = 0
⇒ 36k² + 24k + 4 - ( 32k² + 4k + 32k + 4 ) = 0
⇒ 36k² + 24k + 4 - 32k² - 4k - 32k - 4 = 0
⇒ 36k² - 32k² + 24k - 4k - 32k + 4 - 4 = 0
⇒ 4k² + 20k - 32k = 0
⇒ 4k² - 12k = 0
⇒ 4k ( k - 3 ) = 0
⇒ 4k = 0 ( k - 3 ) = 0
⇒ k = 0 k - 3 = 0
⇒ k = 0 k = 3
∴ The value of k is 0 or 3.
─────────────────────────
Now, by substituting k = 0 in the given equation, we get,
( k + 1 ) x² - 2 ( 3k + 1 ) x + 8k + 1 = 0
⇒ ( 0 + 1 ) x² - 2 ( 3 * 0 + 1 ) x + 8 * 0 + 1 = 0
⇒ x² - 2 ( 0 + 1 ) x + 1 = 0
⇒ x² - 2x + 1 = 0
⇒ x² - x - x + 1 = 0
⇒ x ( x - 1 ) - 1 ( x - 1 ) = 0
⇒ ( x - 1 ) ( x - 1 ) = 0
⇒ ( x - 1 ) = 0
⇒ x - 1 = 0
─────────────────────────
Now, by substituting k = 3 in the given equation, we get,
( k + 1 ) x² - 2 ( 3k + 1 ) x + 8k + 1 = 0
⇒ ( 3 + 1 ) x² - 2 ( 3 * 3 + 1 ) x + 8 * 3 + 1 = 0
⇒ 4x² - 2 ( 9 + 1 ) x + 24 + 1 = 0
⇒ 4x² - ( 2 * 10 ) x + 25 = 0
⇒ 4x² - 20x + 25 = 0
⇒ 4x² - 10x - 10x + 25 = 0
⇒ 2x ( 2x - 5 ) - 5 ( 2x - 5 ) = 0
⇒ ( 2x - 5 ) ( 2x - 5 ) = 0
⇒ ( 2x - 5 ) = 0
⇒ 2x - 5 = 0
⇒ 2x = 5
∴ The roots of the given quadratic equation are