Math, asked by ankushkhadka4032, 10 months ago

Find the value of k for which the system 2x+ky=1 and 3x-5y=7
will have (a) a unique solution and(b) no solution.is there a value of k for which the system has infinitely many solutions

Answers

Answered by amitkumar44481
45

SolutioN :

 \tt \dagger \:  \:  \:  \:  \: 2x + ky = 1. \:  \:  \:  \:  \:  - (1)

 \tt \dagger \:  \:  \:  \:  \: 3x  - 5y = 7. \:  \:  \:  \:  \:  - (2)

\rule{90}2

Let's try With Some Case.

✵ Case 1.

  • (a) a unique solution.

☛ Condition.

 \tt \dagger \:  \:  \:  \:  \:  \dfrac{a_1 }{a_2}  \neq  \dfrac{b_2}{b_2}

Where as,

  • a1 = 2.
  • a2 = 3.
  • b1 = k.
  • b2 = - 5.
  • c1 = 1.
  • c2 = 7.

 \tt  : \implies \dfrac{2 }{3}  \neq  \dfrac{k}{ - 5}

 \tt  : \implies \dfrac{ - 10 }{3}  \neq k

 \tt  : \implies k \neq \dfrac{ - 10 }{3}

\rule{90}2

✵ Case 2.

  • No Solution.

☛ Condition.

 \tt \dagger \:  \:  \:  \:  \:  \dfrac{a_1 }{a_2}   =   \dfrac{b_2}{b_2}   \neq \dfrac{c_1}{c_2}

 \tt  : \implies  \dfrac{2 }{3}   =   \dfrac{k}{ - 5}   \neq \dfrac{1}{7}

 \tt  : \implies   {k} = - \dfrac{10}{3}

And,

 \tt  : \implies   \dfrac{k}{ - 5}   \neq \dfrac{1}{7}

 \tt  : \implies   k  \neq  - \dfrac{5}{7}

\rule{90}2

✵ Case 3.

  • Many Solution.

☛ Condition.

\tt \dagger \:  \:  \:  \:  \:  \dfrac{a_1 }{a_2}   =   \dfrac{b_2}{b_2}    =  \dfrac{c_1}{c_2}

 \tt :  \implies \dfrac{2}{3}   =   \dfrac{k}{ - 5}    = \dfrac{1}{7}

 \tt  : \implies   {k} = - \dfrac{10}{3}

And,

 \tt  : \implies   \dfrac{k}{ - 5}    =  \dfrac{1}{7}

 \tt  : \implies   k   =  - \dfrac{5}{7}

Similar questions