find the value of k if 3x+ky_1=0 7x_3y+3 are perpendicular
Answers
Answered by
0
Step-by-step explanation:
3x−4y+5=0
⟹4y=3x+5
⟹y=34x+53
m1=34
3x+ky+10=0
⟹ky=−3x−10
⟹y=−3kx−10k
m2=−3k
Two lines are parallel, if they have the same slope.
Setting m1=m2 yields
34=−3k
⟹14=−1k
⟹k=−4
Similar questions