find the value of k if the given equation has real and equal roots
1. (k-12)x2+2(k-12)x+2=0
Answers
Answered by
11
Hi friend!!
Given quadratic equation,
For a quadratic equation to have real and equal roots, it's discriminant must be equal to zero.
→ b²-4ac=0
= 4(k-12)²-4(k-12)(2)=0
k²+144-24k-2k+24=0
k²-26k+168=0
k²-12k-14k+168=0
k(k-12)-14(k-12)=0
(k-14)(k-12)=0
k=12,14
I hope this will help you ;)
Given quadratic equation,
For a quadratic equation to have real and equal roots, it's discriminant must be equal to zero.
→ b²-4ac=0
= 4(k-12)²-4(k-12)(2)=0
k²+144-24k-2k+24=0
k²-26k+168=0
k²-12k-14k+168=0
k(k-12)-14(k-12)=0
(k-14)(k-12)=0
k=12,14
I hope this will help you ;)
Answered by
2
Discriminant = b²-4ac
=> [2(k-12)]² - 4(k -12)(2)
=> [4(k²+144-24k] -8k + 96
=> 4 [k² + 144 -24k - 2k +24]
We know that equal roots, Discriminant =0
4[k² -26k + 168] = 0
=> k² - 26k + 168 = 0
=> k² - (14 + 12)k + 168 =0
=> k² - 14k - 12k + 168 =0
=> k(k - 14) - 12( k - 14) = 0
=> (k - 14)(k - 12) =0
k = 14 or 12
I hope this will help you
-by ABHAY
=> [2(k-12)]² - 4(k -12)(2)
=> [4(k²+144-24k] -8k + 96
=> 4 [k² + 144 -24k - 2k +24]
We know that equal roots, Discriminant =0
4[k² -26k + 168] = 0
=> k² - 26k + 168 = 0
=> k² - (14 + 12)k + 168 =0
=> k² - 14k - 12k + 168 =0
=> k(k - 14) - 12( k - 14) = 0
=> (k - 14)(k - 12) =0
k = 14 or 12
I hope this will help you
-by ABHAY
abhi569:
(-:
Similar questions