Math, asked by Tanishq1668, 9 months ago

Find the value of k , if the points a[2,3] b[4,k] &-c[6,3] are collinea

Answers

Answered by jaiverma1928pb530n
0

Step-by-step explanation:

I hope you are satisfied by my answer

Attachments:
Answered by Anonymous
4

\sf\blue{Correct \ Question}

\sf{Find \ the \ value \ of \ k, \ if \ point}

\sf{A(2,3); \ B(4,k) \ and \ C(6,3) \ are \  collinear.}

_________________________________

\sf\red{\underline{\underline{Answer:}}}

\sf{The \ value \ of \ k \ is \ 3.}

\sf\orange{Given:}

\sf{Co-ordinates \ of \ collinear \ points \ are:-}

\sf{\implies{A(2,3);}}

\sf{\implies{B(4,k);}}

\sf{\implies{C(6,3).}}

\sf\pink{To \ find:}

\sf{The \ value \ of \ k.}

\sf\green{\underline{\underline{Solution:}}}

\sf{If \ points \ are \ collinear \ the \ slope}

\sf{of \ lines \ formed \ by \ joining \ points}

\sf{will \ be \ equal.}

\boxed{\sf{Slope \ of \ line(m)=\frac{y2-y1}{x2-x1}}}

\sf{Slope \ of \ line \ AC=\frac{3-3}{6-2}}

\sf{\therefore{Slope \ of \ AC=0}}

\sf{Slope \ of \ line \ BC=\frac{3-k}{6-4}}

\sf{But, \ slope \ of \ line \ AC = Slope \ of \ line \ BC}

\sf{\therefore{\frac{3-k}{6-4}=0}}

\sf{\therefore{3-k=0}}

\sf{\therefore{-k=-3}}

\sf{\therefore{k=3}}

\sf\purple{\tt{\therefore{The \ value \ of \ k \ is \ 3.}}}

Similar questions