find the value of k , if the roots of the following equation:
x^2 -6x+( k+7 ) =0 ( quadratic equation )
Answers
Answered by
3
Required Answer :
- The value of k = 16
Given :
- The roots of the following equation are equal :
- x² - 6x + (k + 7) = 0
To find :
- The value of k = ?
Solution :
Here, we are given that the roots of the equation = x² + 6x + (k + 7) = 0 are equal and we need to calculate the value of k. So, for that we will use the discriminant formula.
- D = b² - 4ac
⇒ x² + 6x + (k + 7) = 0
Comparing with ax² + bx + c = 0
we have,
- a = 1
- b = 6
- c = (k + 7)
⇒ (6)² - 4(1)(k + 7) = 0
⇒ (6 × 6) - 4(k + 7) = 0
⇒ 36 - 4k + 28 = 0
⇒ 64 - 4k = 0
⇒ - 4k = - 64
⇒ Cancelling the (-) sign :
⇒ 4k = 64
⇒ k = 64/4
⇒ Cancelling by 2 :
⇒ k = 32/2
⇒ Cancelling by 2 :
⇒ k = 16
Therefore, the value of k = 16
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
Know More :
⇒ When b² - 4ac = 0
- The roots are equal.
⇒ When b² - 4ac > 0
- The roots are real and unequal.
⇒ When b² - 4ac < 0
- The roots are imaginary.
Similar questions