Math, asked by numairuddin05, 10 months ago

Find the value of k if the system of equations have no solution. 3x + y = 1; (2k – 1)x + (k – 1)y = 2k + 1

Answers

Answered by Shishirdwivedi
8

Answer:

k=2,k is not Equal to -3

Step-by-step explanation:

3/2k-1=1/(k-1) is not Equal to 1/2k+1

3k-3=2k-1

solving this,k=2

2k+1 is not Equal to k-1

which is not Equal to-2

Answered by amitkumar44481
21

AnsWer :

  • k = 2.
  • k ≠ - 2.

SolutioN :

Condition : No Solution.

 \tt \dagger \:  \:  \:  \:  \:   \dfrac{a_1}{a_2} =  \dfrac{b_1}{b_2} \neq \dfrac{c_1}{c_2}

Where as,

  • a1 = 3.
  • a2 = 2k - 1.
  • b1 = 1.
  • b2 = k - 1
  • c1 = 1.
  • c2 = 2k + 1.

Now,

☛ Condition 1st :

 \tt :  \implies  \dfrac{3}{2k - 1} =  \dfrac{1}{k  - 1} \neq \dfrac{1}{2k + 1}

 \tt :  \implies  \dfrac{3}{2k - 1} =  \dfrac{1}{k  - 1}

 \tt :  \implies  3(k  - 1) =   2k - 1.

 \tt :  \implies  3k  - 3=   2k - 1.

 \tt :  \implies  k=   3 - 1

 \tt :  \implies  k=  2.

☛ Condition 2nd :

 \tt :  \implies   \dfrac{1}{k  - 1} \neq \dfrac{1}{2k + 1}

 \tt :  \implies k  - 1\neq 2k + 1

 \tt :  \implies 0\neq k + 1 + 1

 \tt :  \implies k\neq  - 2.

Therefore, the value of k is 2 and not equal to - 2.

\rule{200}3

MorE InformatioN :

Many Solution :

 \tt \dagger \:  \:  \:  \:  \:   \dfrac{a_1}{a_2} =  \dfrac{b_1}{b_2} = \dfrac{c_1}{c_2}

Unique Solution :

 \tt \dagger \:  \:  \:  \:  \:   \dfrac{a_1}{a_2} \neq \dfrac{b_1}{b_2}

No Solution :

 \tt \dagger \:  \:  \:  \:  \:   \dfrac{a_1}{a_2} =  \dfrac{b_1}{b_2} \neq \dfrac{c_1}{c_2}


RvChaudharY50: Perfect.
amitkumar44481: Thanks bhai ❤️
Similar questions