Math, asked by Hmkksneca, 8 months ago

Find the value of k, if the system of linear equation (3k+4)x+2y= (-k+3) ; (2k-5)x+4y=7-k has no solution

Answers

Answered by mysticd
0

 Given \: system \:of \: linear \: equations :

 (3k+4)x + 2y + (k-3) = 0\: --(1)

 and \: (2k-5)x + 4y +( k - 7) = 0\: --(2)

 Compare \: above \: equations \:with

 a_{1}x + b_{1}y + c_{1} = 0 \:and

 a_{2}x + b_{2}y + c_{2} = 0 , we \:get

 a_{1} = (3k+4) , b_{1} = 2 , \:c_{1} = (k-3)

 a_{2} = (2k-5) , b_{2} = 4, \:and\:c_{2} = (k-7)

 \orange{\frac{a_{1}}{a_{2}} = \frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}}}

 \blue { Given \: they \:have\:no \: solution )}

 \implies \frac{(3k+4)}{(2k-5)} = \frac{2}{4}

 \implies \frac{(3k+4)}{(2k-5)} = \frac{1}{2}

 \implies 2(3k+4) = 2k - 5

 \implies 6k + 8 = 2k - 5

 \implies 6k - 2k = - 5 - 8

 \implies 4k = - 13

 \implies k = \frac{- 13 }{4}

Therefore.,

 \red{ Value \: of \:k } \green{ = \frac{- 13 }{4}}

•••♪

Similar questions