Math, asked by rahul3142, 10 months ago

find the value of k if x+2 is a factor of kx²-√2x+1​

Answers

Answered by Anonymous
163

\huge\sf\red{\underline{\underline{Given}}}\::

\begin{cases}\sf\gray{( x + 2) \: is \: factor} \\ \sf\gray{{kx}^{2}\:  - \: \sqrt{2} x\: +\: 1 \:=\: 0}\end{cases}

\huge\sf\blue{\underline{\underline{To\:Find}}}\::

\begin{cases}\sf\gray{Value \ of \ k }\end{cases}

\huge\sf\pink{\underline{\underline{Solution}}}\::

\sf\orange{ATQ}

 \hookrightarrow \:{\sf{\green{ x \:=  \:- 2}}}\\  \\  {\bf{\underline{\blue{As \: we \: know \: that}}}} \\ \\  \leadsto \:\:\:{\sf{\purple{ p(x) \to  {kx}^{2}  -  \sqrt{2} x + 1 = 0 }}} \\  \\ \leadsto \:\:\:{\sf{\green{ p( - 2) \to k \times  {( - 2)}^{2}  -  \sqrt{2} ( - 2) + 1 = 0}}} \\  \\  \leadsto \:\:\:{\sf{\purple{ k \times 4 + 2 \sqrt{2}  + 1 = 0}}} \\  \\ \leadsto \:\:\:{\sf{\green{ 4k  + 2 \sqrt{2}  +  1 = 0}}} \\  \\ \leadsto \:\:\:{\sf{\purple{ 4k =  - 1 - 2 \sqrt{2}}}}  \\  \\  \leadsto \:\:\:{\sf{\green{ k =  \frac{ - 1 - 2 \sqrt{2} }{4} }}} \\  \\   \leadsto \:\:\:{\sf{\pink{ \therefore\: Value \: of \: k \: is \:  \frac{ - 1 - 2 \sqrt{2} }{4} }}}

Similar questions