Math, asked by somachoudhury36, 11 months ago

find the value of K in which the quadratic equation (k-4)x²+2(k-4)x + 2 =0 has equal roots​

Answers

Answered by Anonymous
1

Answer:

b2-4ac= 0

Step-by-step explanation:

by this formula you find the value of k

Answered by BrainlyConqueror0901
2

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\therefore{\text{Value\:of\:k=6\:and\:4}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{ \underline \bold{Given : }} \\   \tt{ : \implies (k - 4)x^{2}  +2( k - 4)x + 2 = 0 }\\  \\ \red{ \underline \bold{To \: Find : }} \\    \tt{: \implies  value \: of \: k = ?}

• According to given question :

  \tt{ : \implies ( k - 4)x^{2}  +2( k - 4)x + 2 = 0} \\   \\   \tt{\circ  \: a = (k - 4)} \\   \tt{\circ \: b = (2k -8)}\\ \tt{\circ \:c = 2}\\    \bold{Discriminant \:  = 0} \\  \\     \tt{:  \rightarrow \: D \implies  {b}^{2} - 4ac = 0 } \\  \\    \tt{: \implies  {b}^{2}  - 4ac = 0} \\  \\  \text{Putting \: the \: given \: values} \\   \tt{: \implies (2k - 8)^{2}  -  4 \times( k - 4) \times 2 = 0 } \\  \\    \tt{: \implies \:  4{k}^{2}  + 64-32k - 8k  + 32 = 0 } \\  \\  \tt{ : \implies \:   4{k}^{2}   - 40k + 96 = 0 } \\  \\  \text{Solving \: quadratic \: by \: middle \: term \: spliting \: method}  \\ \tt{ :  \implies  {k}^{2}  - 6k - 4k  + 24  = 0} \\  \\   \tt{: \implies k(k - 6) - 4(k - 6) = 0} \\  \\   \tt{: \implies (k - 6)(k -4) = 0} \\  \\   \green{\tt{: \implies k = 6 \: and \: 4}}

Similar questions