Math, asked by ayushma599, 10 months ago

find the value of k so that eqn 3x^2+kx-2=0 has roots whose sum is equal to 6​

Answers

Answered by BrainlyPopularman
36

{ \bold{ \boxed{ \boxed { \mathfrak{ \red{ \huge{ \huge{answer}}}}}}}}

{ \bold{ \underline{Given  \:  \: quadratic \:  \:  equation} :  - }} \\  \\ \\  { \bold{ \orange{ \mathtt{ \implies \:  \: 3 {x}^{2}   + kx - 2 = 0}}}}

{ \bold{ \underline{To \:  \:  find} :  - }} \\  \\  \\ { \bold{ \orange{ \mathtt{ \implies  \: value \:  \: of \:   \: \: k  \: }}}}

{ \bold{ \red{ \mathtt{  \underline{used \:  \: formula}  : -   }}}} \\  \\ { \bold{ \orange{ \mathtt{ (1) \:  \: sum \:  \: of \:  \: roots \:  \:  =  -  \frac{b}{a}   }}}}

{ \bold{ \boxed{ \boxed{ \green{  \huge \:  \star \: solution \star}}}}}

{ \bold{ \orange{ \mathtt{ \:  \implies \: sum \:  \: of \:  \: roots \:  \:  =  -  \frac{b}{a}  =  -  \frac{k}{3} = 6 }}}} \\  \\ { \bold{ \orange{ \mathtt{ \:  \implies \:  -  \frac{k}{3} = 6 }}}} \\  \\ { \bold{ \orange{ \mathtt{ \:  \implies \: { \boxed{k =  - 18}}}}}}

{ \bold{ \underline{ Extra \:  \:  knowledge } :  - }} \\  \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  { \bold{ \mathtt{ \blue{. \:  \: multiply \:  \:of \:  \: roots =  \frac{c}{a}  }}}} \\  \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   { \bold{ \mathtt{ \blue{ . \: difference \:  \: of \:  \: roots =  \frac{ \sqrt{d} }{a}  }}}}

Answered by Anonymous
23

⠀⠀⠀⠀\huge\underline{ \overline{ \bf{ \purple{QUESTION}}}}

find the value of k so that eqn 3x^2+kx-2=0 has roots whose sum is equal to 6

_________________________________

⠀⠀⠀⠀⠀\huge\underline{ \underline{ \bf{ {  \blue{ an{ \pink{sw{ \purple{er \: : =  }}}}} }}}}

  \large\underline{ \underline{ \green{ \bold {given}}}} =  >

 \bf \large \: a = 3 \\  \bf \large \:b = k \\  \bf \large \: c =  - 2

 \bf \large \: sum \: of \: roots \:  = 6

\large\underline{ \underline{ \green{ \bold{solution}}}}  =  >

 \bf \large \:  \alpha  +  \beta  = 6 \ \\ \ <strong>=</strong><strong>=</strong><strong>&gt;</strong> \bf \large6 =  \frac{ - k}{3}  \\ \  \\ <strong>=</strong><strong>=</strong><strong>&gt;</strong>\bf \large 6 \times 3 =  - k  \\  \\  \large \:{ \boxed{ \fbox{ \purple{ \bf{k =-18 }}}}}

___________________________________

hops this may help you

 \huge{ \red{ \ddot{ \smile}}}

 \huge \blue{ \mathfrak{thanks♡</p><p>}}

Similar questions