Math, asked by deepesh8888, 5 months ago

Find the value of k so that the following system of equations has no solution:

3x – y – 5 = 0, 6x – 2y + k = 0​

Answers

Answered by LaeeqAhmed
3

\color{red}\huge{\underline{\underline{GIVEN\dag}}}

  • 3x - y - 5 = 0
  • 6x - 2y + k = 0
  • This system of lines has 'no solution'.

\color{red}\huge{\underline{\underline{SOLUTION\dag}}}

We know that;

Condition for no solution for system of lines is:

\blue{\boxed{\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}}}

where,

  • a,b & c are co-efficeints.

Here,

  • a_{1}=3 ; a_{2}=6
  • b_{1}=-1 ; b_{2}=-2
  • c_{1}=-5 ; c_{2}=k

 \implies\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}

 \implies\frac{3}{6}=\frac{ - 1}{ - 2}=\frac{ - 5}{k}

\implies\frac{1}{2}=\frac{ 1}{  2}=\frac{ - 5}{k}

\implies\frac{ 1}{  2}=\frac{ - 5}{k}

 \implies \frac{k}{2}  =  - 5

  \color{orange} \boxed{\therefore k  =  - 10}

HOPE THAT HELPS!!

Similar questions