Math, asked by jahnavi7978, 7 months ago

Find the value of 'k' so that the zeroes of the quadratic polynomial 3x² - kx + 14 are in the ratio 7:6 .​

Answers

Answered by TheFairyTale
12

Answer:

 \boxed{ \red{ \sf \: k  = 13}}

GivEn :-

  • the zeroes of the quadratic polynomial 3x² - kx + 14 are in the ratio 7:6

To Find :-

  • The value of k

Step-by-step explanation:

Let the two zeroes of the quadratic polynomial be 7x and 6x ( x > 0 ; common factor )

Formula of a quadratic polynomial,

 \boxed {\sf \: a {x}^{2}  + bx + c = 0  \: ;(a \neq 0)}

We know that,

 \boxed{ \sf \: Sum \:  of \:  the  \: zeroes =   - \dfrac{b}{a}}

 \implies \sf \: 7x + 6x =  -  (\dfrac{ - k}{3} )

 \implies \sf \: 13x =  \dfrac{  k}{3}

 \implies \sf \: x =  \dfrac{  k}{3 \times 13}

 \implies \boxed{ \red{ \sf \: x =  \dfrac{  k}{39} }} \: ........1)

And,

 \boxed{ \sf \: Product \:  of \:  zeroes  =  \dfrac{c}{a} }

 \implies \sf \: 7x  \times 6x =  \dfrac{14}{3}

 \implies \sf \: 42 {x}^{2} =  \dfrac{14}{3}

 \implies \sf \:  {x}^{2} =  \dfrac{14}{3 \times 42}

 \implies \sf \:  {x}^{2}  =  \dfrac{1}{9}

 \implies  \boxed{ \red{\sf \: x  =  \dfrac{1}{3} }}

Putting the value of x in the place of equation no 1) we get,

 \implies \sf \:  \dfrac{1}{3}  =  \dfrac{k}{39}

 \implies \sf \:  3k =  39

 \implies  \boxed{ \red{ \therefore \: \sf \:  k =    \cancel\dfrac{39}{3}  = 13}}

Answered by Anonymous
3

 \huge\sf\purple{k=±13}

 \sf Let \:\alpha\: and\: \beta \:be\: the  \:roots \:of\: polynomial \\\\\sf \: 3x² - kx + 14 \\\\\sf</p><p>Then, \:\alpha + \beta = \frac{-(-k)} {3}=\frac{k}{3}\:\:\: (i)  \\\\\sf</p><p>and\: \alpha\: x \:\beta = \frac{14}{3} \:\:\:(ii)\\\\\sf </p><p>We \:know\: that\: \alpha:\beta=7:6 \\\\\sf</p><p>6\alpha=7\beta \\\\\sf</p><p>\alpha=\frac{7\beta} {6}  \\\\\sf</p><p></p><p>Putting, \:\alpha=\frac{7\beta}{6} in (i), we\:get \\\\\sf</p><p>=\alpha + \beta =\frac{k}{3} \\\\\sf</p><p>=\frac{7\beta} {6} + \beta= \frac{k} {3} \\\\\sf</p><p>=\frac{7\beta+6\beta}{6}=\frac{k} {3} \\\\\sf</p><p>=\frac{13\beta} {6}=\frac{k} {3} \\\\\sf</p><p>=2k=13\beta \:(iii) \\\\\sf</p><p>Now,\: from\: (ii)  \\\\\sf</p><p>=\alpha \:x \:\beta = \frac{14}{3} \\\\\sf</p><p>=\frac{7\beta} {6} x \beta=\frac{14}{3} \\\\\sf</p><p>=\frac{7\beta^2}{6} =\frac{14}{3} \\\\\sf</p><p>=\beta^2=4 \\\\\sf</p><p>=\beta=±2 \\\\\sf</p><p>Putting,\: \beta=\:±2\: in \: (iii), we\: get  \\\\\sf</p><p>=2k=13\beta \\\\\sf</p><p>=2k=13\:x±2 \\\\\sf</p><p>k=\frac{13\:x±2}{2} \\\\\sf</p><p>k=\frac{13\:x± \cancel{2}}{ \cancel{2}} \\\\\sf</p><p>\huge\boxed{k=±13} \\\\\sf</p><p>

Similar questions