find the value of k such that equation (k-12)x square +(k-12)x+2=0 has equal roots
Answers
Answered by
47
Answer:
k = 12 or 20
Step-by-step explanation:
Given:
- Quadratic equation = (k - 12)x² + (k - 12)x + 2 = 0
To find:
The value of k = ?
Solution:
Compare the given quadratic equation with the general form of quadratic equation i.e. ax² + bx + c
We observe that:
- a = (k - 12)
- b = (k - 12)
- c = 2
When the roots are given as equal,
D = 0
⇒ b² - 4ac = 0
⇒ (k - 12)² - 4(k - 12)2 = 0
⇒ (k - 12)² = 4(k - 12)2
⇒ k² + 144 - 24k = 8k - 96
⇒ k² + 144 + 96 = 8k + 24k
⇒ k² + 240 = 32k
⇒ k² - 32k + 240 = 0
⇒ k² - 20k - 12k + 240 = 0
⇒ k (k - 20) - 12 (k - 20) = 0
⇒ (k - 12) (k - 20) = 0
∴ The value of k is 12 or 20
Similar questions
English,
6 months ago
Social Sciences,
6 months ago
Math,
1 year ago
English,
1 year ago
Math,
1 year ago