find the value of k such that one zero of the polynomial 3x√2+(1+4k)x+k√2+5 is one third of the other
Answers
Answered by
2
Answer:
.k = 79/8
Step-by-step explanation:
Let a and a/3 are the roots of 3x^2+(1+4k).x+(k^2+5)=0.
a+a/3=-(1+4k)/3.
4a/3= -(1+4k)/3.
4a = -(1+4k).
a =-(1+4k)/4…………….(1)
a×a/3 =(k^2+5)/3.
a^2 = (k^2+5).
put a =-(1+4k)/4 from eq .(1).
{+(1+4k)^2}/16=(k^2+5).
1+16k^2+8k = 16k^2+80.
8k=79 => k = 79/8
hope this is helpful
thank you
Similar questions
Computer Science,
1 month ago
Social Sciences,
1 month ago
English,
1 month ago
English,
2 months ago
Math,
9 months ago
Science,
9 months ago