Math, asked by rashij4295, 10 months ago

find the value of k such that sum of zeroes is equal to the product of zeroes of the following quadratic polynomial (k+1)x²+(2k+1)x-9​

Answers

Answered by ExᴏᴛɪᴄExᴘʟᴏʀᴇƦ
3

\huge\sf\pink{Answer}

☞ Value of k = 4

\rule{110}1

\huge\sf\blue{Given}

✭ Sum of zeroes is equal to the product of the zeroes of the quadratic polynomial (k+1) x² + (2k+1)x - 9.

\rule{110}1

\huge\sf\gray{To \:Find}

☆ Value of k?

\rule{110}1

\huge\sf\purple{Steps}

\leadsto { \sf{(k + 1) {x}^{2} + (2k + 1)x - 9 = 0 }} \\

\sf\underline{We \ know \ that}

\dashrightarrow { \sf{sum \: \: of \: \: roots = - \dfrac{coffieciant \: \: of \: \: x}{coffieciant \: \: of \: \: {x}^{2} } }} \\

\dashrightarrow{ \sf{sum \: \: of \: \: roots = - \dfrac{(2k + 1)}{(k + 1)} }} \\

\dashrightarrow{ \sf{sum \: \: of \: \: roots = - \bigg\lgroup \: \dfrac{2k + 1}{k + 1}\bigg\rgroup }} \\

 \dashrightarrow { \sf{ \: Product \: \: of \: \: roots = \dfrac{constant \: \: term}{coffieciant \: \: of \: \: {x}^{2} } }} \\

\dashrightarrow{ \sf{Product \: \: of \: \: roots = \dfrac{( - 9)}{(k + 1)} }} \\

\dashrightarrow{ \sf{Product \: \: of \: \: roots = - \bigg\lgroup  \dfrac{9}{k + 1} }}\bigg\rgroup \\

\sf\underline{As \ per \ the \ Question}

\twoheadrightarrow{ \sf{Sum \:  of \:  Roots = Product \: of \: Roots}} \\

\twoheadrightarrow{ \sf{- \bigg\lgroup \: \dfrac{2k + 1}{k + 1}\bigg\rgroup = - \bigg\lgroup\dfrac{9}{k + 1}\bigg\rgroup}}  \\

\twoheadrightarrow{ \sf{(2k + 1)(k + 1) = (k + 1)9}}\\

\twoheadrightarrow{ \sf{(2k + 1)(k + 1) - (k + 1)9 = 0}} \\

\twoheadrightarrow{ \sf{(2k + 1 - 9)(k + 1) = 0}}\\

\twoheadrightarrow{ \sf{(2k - 8)(k + 1) = 0}} \\

\twoheadrightarrow{ \sf{(k - 4)(k + 1) = 0}}\\

\twoheadrightarrow \color{lime}{ \sf{k = 4 \: , \: - 1}}\\

But whena k = -1 leading coffieciant of quadratic equation will be zero , but we know that coffieciant of x² can't be zero.

\sf\color{aqua}{\therefore K = 4}

\rule{170}3

Answered by TheMoonlìghtPhoenix
10

Step-by-step explanation:

ANSWER:-

We know that:-

 \alpha  +  \beta  =  \frac{ - b}{a}

and

 \alpha  \beta  =  \frac{c}{a}

So it is given that sum of zeroes is equal to product of the same

ie

 \alpha  +  \beta  =  \alpha  \beta

ie

 \frac{ - b}{a}  =   \frac{c}{a}

  - b = c

We know that :-

b = 2k + 1

c =  - 9

Placing the following

 - (2k + 1) =  - 9

2k + 1 = 9

2k = 8

k = 4

k = 4 is the answer....

THINGS TO NOTE :-

 \alpha  +  \beta  =  \frac{ - b}{a}

 \alpha  \beta  =  \frac{c}{a}

 \alpha  \beta \gamma  =  \frac{-d}{a}

 \alpha  +  \beta + \gamma  =  \frac{ - b}{a}

 \alpha \beta  +  \beta \gamma + \gamma \alpha  =  \frac{ c}{a}

Similar questions