find the value of k such that the following quadratic equation has equal roots.(k-12)x^2-2(k-12)x+2=0
Answers
Answered by
4
If the quadratic equation has equal roots
so Discriminant =0
d=b^2-4ac
0=(2(k-12))^2-4*(k-12)*2
0=4(k^2+144-24k)-8(k-12)
0=4k^2+576-96k-8k+96
0=4k^2+672-104k
0=4(k^2+168-26k)
0=k^2-26k+168
0=k^2-(14+12)k+168
0=k^2-14k-12k+168
0=k(k-14)-12(k-14)
0=(k-12)(k-14)
k=12,k=14
plssss marks as brainliest
so Discriminant =0
d=b^2-4ac
0=(2(k-12))^2-4*(k-12)*2
0=4(k^2+144-24k)-8(k-12)
0=4k^2+576-96k-8k+96
0=4k^2+672-104k
0=4(k^2+168-26k)
0=k^2-26k+168
0=k^2-(14+12)k+168
0=k^2-14k-12k+168
0=k(k-14)-12(k-14)
0=(k-12)(k-14)
k=12,k=14
plssss marks as brainliest
nova5:
plssss marks as brainliest
Answered by
12
Equal roots
(k - 12)x² −2(k - 12)x + 2=0.
Situation
If roots are equal then b² = 4ac
Equation :-
(k - 12)x² - 2(k - 12)x+ 2
a = k - 12
b = -2(k - 12)
c = 2
Hence here,
⇒ 4(k² + 144 - 24k) = 8k - 96
⇒ k² + 144 - 24k = 2k - 24
⇒ k² - 26k + 168 = 0
Hence we get,
⇒ k = 13 ± 1
⇒ k² - 26k + 168 = 0
⇒ k² - 14k - 12k + 168 = 0
⇒ k(k - 14) -12(k - 14) = 0
⇒ (k - 14)(k - 12) = 0
⇒ k = 14 , k = 12
Similar questions