Math, asked by aditya5472, 1 year ago

Find the value of k that x² + 2x + k is a factor of
 {2x}^{4}  +  {x}^{3}  - 14 {x}^{2}  + 5x \:  + 6
and also the two zeroes of the polynomial.​

Answers

Answered by waqarsd
6

Answer:

Step-by-step explanation:

2x^4+x^3-14x^2+5x+6\\\\=2x^4+3x^3-11x^2-6x-2x^3-3x^2+11x+6\\\\=x(2x^3+3x^2-11x-6)-1(2x^3+3x^2-11x-6)\\\\=(x-1)(2x^3+3x^2-11x-6)\\\\=(x-1)(2x^3+7x^2+3x-4x^2-14x-6)\\\\=(x-1)(x(2x^2+7x+3)-2(2x^2+7x+3))\\\\=(x-1)(x-2)(2x^2+7x+3)\\\\=(x-1)(x-2)(2x^2+6x+x+3)\\\\=(x-1)(x-2)(2x(x+3)+1(x+3)))\\\\=(x-1)(x-2)(x+3)(2x+1)\\\\=(x-1)(x+3)(x-2)(2x+1)\\\\=(x(x+3)-(x+3))(x-2)(2x+1)\\\\=(x^2+2x-3)(x-2)(2x+1)\\\\

Therefore k=-3

Hope it helps

Similar questions