Math, asked by devansh4099, 6 months ago

two.particles a and b are moving with velocities 3m/s and 4m/s in mutually perpendicular direction calculate the magnitude of velocity of A w.r.t B

Answers

Answered by Anonymous
4

Given:

Two particles A and B are moving with velocity 3m/s and 4m/s in mutually perpendicular direction.

To find:

Velocity of A w.r.t B ?

Calculation:

The Velocity of Particle A with respect to Particle B can be mathematically represented as the vector difference between velocity vector of A and B.

\therefore \: \vec{v}_{AB} = \vec{v}_{A} - \vec{v}_{B}∴

v

AB

=

v

A

v

B

\implies \: | \vec{v}_{AB} | = \sqrt{ {| \vec{v}_{A} |}^{2} + { | \vec{v}_{B}|}^{2} + 2 |v_{A}| |v_{B}| \cos( {180}^{ \circ} - {90}^{ \circ} ) }⟹∣

v

AB

∣=

v

A

2

+∣

v

B

2

+2∣v

A

∣∣v

B

∣cos(180

−90

)

\implies \: | \vec{v}_{AB} | = \sqrt{ {| \vec{v}_{A} |}^{2} + { | \vec{v}_{B}|}^{2} + 2 |v_{A}| |v_{B}| \cos( {90}^{ \circ} ) }⟹∣

v

AB

∣=

v

A

2

+∣

v

B

2

+2∣v

A

∣∣v

B

∣cos(90

)

\implies \: | \vec{v}_{AB} | = \sqrt{ {| \vec{v}_{A} |}^{2} + { | \vec{v}_{B}|}^{2} + 2 |v_{A}| |v_{B}| (0) }⟹∣

v

AB

∣=

v.

A

2

+∣

v

B

2

+2∣v

A

∣∣v

B

∣(0)

\implies \: | \vec{v}_{AB} | = \sqrt{ {| \vec{v}_{A} |}^{2} + { | \vec{v}_{B}|}^{2} }⟹∣

v

AB

∣=

v

A

2

+∣

v

B

2

\implies \: | \vec{v}_{AB} | = \sqrt{ {(3)}^{2} + {(4)}^{2} }⟹∣

v

AB

∣=

(3)

2

+(4)

2

\implies \: | \vec{v}_{AB} | = \sqrt{ 9 + 16}⟹∣

v

AB

∣=

9+16

\implies \: | \vec{v}_{AB} | = \sqrt{25}⟹∣

v

AB

∣=

25

\implies \: | \vec{v}_{AB} | = 5 \: m {s}^{ - 1}⟹∣

v

AB

∣=5ms

−1

So, velocity of particle A w.r.t particle B is 5 m/s.

❤Sweetheart❤

....

Similar questions