Math, asked by wiaamshah, 1 month ago

Find the value of L and m for which the
following expression will become perfect
square x^4+ 4x^3+16x^2 +lx+m​

Answers

Answered by sampadm398
0

l = 4 , m = 1

Step-by-step explanation:

( x + 1 )⁴ = x⁴ + 4x³ + 6x² + 4x + 1 [equation no. 1]

If x⁴ + 4x³ + 6x² + lx + m is a perfect square [From equation no. 1]

then it should be l = 4 , m = 1

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

\sf \: Let \:  {x}^{4} +  {4x}^{3} +  {16x}^{2} + lx + m =  {(a {x}^{2} + bx + c)}^{2}

 \sf \:  =  \:  {a}^{2} {x}^{4} +  {b}^{2} {x}^{2} +  {c}^{2} + 2ab {x}^{3} + 2bcx + 2ac {x}^{2}

 \sf \:  =  \:  {a}^{2} {x}^{4}  + 2ab {x}^{3}+  {b}^{2} {x}^{2}   + 2ac {x}^{2}+ 2bcx +  {c}^{2}

 \sf \:  = \:  {a}^{2} {x}^{4}+2ab {x}^{3}+  ({b}^{2}+ 2ac) {x}^{2}+ 2bcx +  {c}^{2}

So,

On comparing we get

 \red{\rm :\longmapsto\: {a}^{2} = 1 \implies \: a = 1 }-  -  - (1)

 \blue{\rm :\longmapsto\:2ab = 4 \implies \: 2 \times 1 \times b = 4 \implies \: b = 2}

 \green{\rm :\longmapsto\: {b}^{2} + 2ac = 16}

Put values of a and b, we get

 \green{\rm :\longmapsto\: {2}^{2} + 2(1)c = 16}

\green{\rm :\longmapsto\:4 + 2c = 16}

\green{\rm :\longmapsto\:2c = 16 - 4}

\green{\rm :\longmapsto\:2c = 12}

\green{\rm :\longmapsto\:c = 6}

Now,

\pink{\rm :\longmapsto\:l = 2bc \implies \: l = 2 \times 2 \times 6 = 24}

and

 \purple{\rm :\longmapsto\:m =  {c}^{2} \implies \: m =  {6}^{2}   = 36}

Additional Information :-

More Identities to know:

  • (a + b)² = a² + 2ab + b²

  • (a - b)² = a² - 2ab + b²

  • a² - b² = (a + b)(a - b)

  • (a + b)² = (a - b)² + 4ab

  • (a - b)² = (a + b)² - 4ab

  • (a + b)² + (a - b)² = 2(a² + b²)

  • (a + b)³ = a³ + b³ + 3ab(a + b)

  • (a - b)³ = a³ - b³ - 3ab(a - b)
Similar questions