Math, asked by gobbakaarunakumarigo, 7 months ago

find the value of log 1/343 to the base 7​

Attachments:

Answers

Answered by Bidikha
6

To find -

 log_{7}( \frac{1}{343} )  =  - a

Solution -

 log_{7}( \frac{1}{343} )  =  - a

 log_{7}(343 {}^{ - 1} )  =  - a

 log_{7}( {7}^{ - 3} )  =  - a

 - 3 log_{7}(7)  =  - a

 - 3 \times 1 =  - a

 - 3 =  - a

a = 3

Additional information -

Laws of logarithm -

1) log_{a}(a)  = 1

2) log_{a}(1)  = 0

3) log_{a}(mn)  =  log_{a}(m)  +  log_{a}(n)

4) log_{a}( \frac{m}{n} )  =  log_{a}(m)  -  log_{a}(n)

5) log_{a}( {m}^{p} )  = p log_{a}(m)

6) log_{c}(b)  =  \frac{ log_{a}(b) }{ log_{a}(c) } (a \: and \: b \: are \: positive \: real \: numbers \: and \: a  \: and \: b \: not \: equal \: to \: 1)

Similar questions