Math, asked by jaswanth20, 1 year ago

find the value of log 256/81 to the base 4/3

Answers

Answered by MaheswariS
0

\underline{\textbf{Given:}}

\mathsf{log\,_{\frac{4}{3}}\left(\dfrac{256}{81}\right)}

\underline{\textbf{To find:}}

\textsf{The value of}\;\mathsf{log\,_{\frac{4}{3}}\left(\dfrac{256}{81}\right)}

\underline{\textbf{Solution:}}

\mathsf{Let\;\;x=log\,_{\frac{4}{3}}\left(\dfrac{256}{81}\right)}

\textsf{This can be written as}

\mathsf{\left(\dfrac{4}{3}\right)^x=\dfrac{256}{81}}

\mathsf{\left(\dfrac{4}{3}\right)^x=\dfrac{4^4}{3^4}}

\mathsf{\left(\dfrac{4}{3}\right)^x=\left(\dfrac{4}{3}\right)^4}

\textsf{Equating powers on bothsides, we get}

\mathsf{x=4}

\implies\boxed{\bf\;log\,_{\frac{4}{3}}\left(\dfrac{256}{81}\right)=4}

\textbf{Find more:}

x62 + y^2= 25xy, then prove that 2 log(x+y)=3log3+logx+logy
https://brainly.in/question/477579

Expand log 243 to the base 3 root 3
https://brainly.in/question/4637472

The value of log 0.001 to the base 0.1 is
https://brainly.in/question/5318106

log root a to the base b into log cube root b to the base e into log fourth root of c to the base is equal to
https://brainly.in/question/11843504

Similar questions