Math, asked by harshitchadha77, 9 months ago

find the value of log 4/3 to the base 3/4

Answers

Answered by pulakmath007
3

SOLUTION

TO DETERMINE

The value of

 \displaystyle \sf{ log_{ \frac{3}{4} } \bigg( \frac{4}{3}  \bigg) }

FORMULA TO BE IMPLEMENTED

 \displaystyle \sf{ 1. \:  \:  log( {x}^{n} )  = n log(x) }

 \displaystyle \sf{2. \:  \:  log_{x}(x)   = 1}

EVALUATION

 \displaystyle \sf{ log_{ \frac{3}{4} } \bigg( \frac{4}{3}  \bigg) }

 \displaystyle \sf{ =  log_{ \frac{3}{4} } {\bigg( \frac{3}{4}  \bigg)}^{ - 1}  }

 \displaystyle \sf{ = - 1 \times   log_{ \frac{3}{4} } {\bigg( \frac{3}{4}  \bigg)}^{ }   \:  \:  \: (by \: formula \: 1)}

 \displaystyle \sf{ = - 1 \times   1  \:  \:  \: (by \: formula \: 2)}

 \displaystyle \sf{ = - 1}

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. If log (0.0007392)=-3.1313 , then find log(73.92)

https://brainly.in/question/21121422

2.If 2log((x+y)/(4))=log x+log y then find the value of (x)/(y)+(y)/(x)

https://brainly.in/question/24081206

Similar questions