Math, asked by RoobanKumar, 10 months ago

Find the value of (log2 8 + log3 9 + log5 25).​

Answers

Answered by Anonymous
6

\huge\underline\mathbb{\red Q\pink{U}\purple{ES} \blue{T} \orange{IO}\green{N :}}

Find the value of (log2 8 + log3 9 + log5 25).

\huge\underline\mathbb{\red S\pink{O}\purple{LU} \blue{T} \orange{IO}\green{N :}}

Given that,

  • Value of log2 8 + log3 9 + log5 25

So,

\sf\:⟹ log \: _{2}  \: 8 + log \: _{3}  \: 9 + log \: _{5}  \: 25

\sf\:⟹ log \: _{2}  \: 2³ + log \: _ {3}  \: 3² + log \: _{5} \:  5²

  • \tt\: [↪ log \: _{x}  \: mⁿ = n  \: log \: _{x} \:  m]

\sf\:⟹ 3 \:  log \: _{2}  \: 2 + 2  \: log \: _{3} \:  3 + 2  \: log \: _{5}  \: 5

  • [\tt\:↪ log \: _ {a}  \: a = 1]

\sf\:⟹ 3(1) + 2(1) + 2(1)

\sf\:⟹ 3 + 2 + 2

\sf\:⟹ 7

\underline{\boxed{\bf{\purple{ ∴ Hence, \: the\:value\:of\: log\:_{2}\:8 + log\:_{3}\:9 + log\:_{5}\:25 = 7 }}}}

Similar questions