Math, asked by xcharbhai, 1 year ago

Find the value of m and n: if: (3+√2)/(3-√2) = m + n√2

Answers

Answered by Anonymous
47

Given :-

(3 + √2)/(3 - √2) = m + n√2

here, we've to find the value of m and n.

so first of all, we needa rationalize the denominator.

 \sf LHS :-   \\  \\   \tt =  \frac{3 +  \sqrt{2} }{3 -  \sqrt{2} }  \times  \frac{3 +  \sqrt{2} }{3 +  \sqrt{2} }  \\  \\  \tt  =  \frac{ {(3 +  \sqrt{2} )}^{2} }{(3 -  \sqrt{2})(3 +  \sqrt{2})  }  \\  \\  \tt =  \frac{(3 {})^{2} + 2(3)( \sqrt{2}  ) +   {( \sqrt{2}) }^{2}  }{( {3})^{2}  - ( { \sqrt{2} })^{2} }  \\  \\  \tt =  \frac{9 + 6 \sqrt{2} + 2 }{9 - 2}  \\  \\  \tt =  \frac{11 + 6 \sqrt{2} }{7}  \\  \\  \tt =  \frac{11}{7}  +  \frac{6}{7}  \sqrt{2}

RHS :-

= m + n√2

now comparing LHS with RHS, we get

➡ 11/7 + 6/7 √2 = m + n√2

hence, the value of :-

  • m = 11/7

  • n = 6/7

Similar questions