Math, asked by beastlinc4, 3 months ago

find the value of m for which 5^3m+2÷5^3=5^15​

Answers

Answered by sivasridhar
4

Formula to be noted :

 \sf:\implies {a}^{x}\div{a}^{y} = {a}^{x -y}

Solution :

 \longmapsto\sf{5}^{ \green{(3m + 2)}} \div  {5}^{ \green3} ={5}^{ \green{15}}

we know that :

\sf:\implies {a}^{x}\div{a}^{y} = {a}^{x -y}

therefore,

\sf\longmapsto {5}^{3m +2- 3} = {5}^{15}

\sf\longmapsto {5}^{3m +2- 3 \: = \: 15}

now lets solve the above exponents.

 \implies \sf3m +2- 3 =15

\implies \sf3m -1=15

\implies \sf3m=15 + 1

\implies \sf3m=16

\implies \sf \: m =\dfrac{16}{3}

Answered by Anonymous
54

Given:

  •  {\tt{ 5^{3m+2} ÷ 5^3 = 5^{15} }}

To Find

  • Value of the m?

Solution:

 \circ \: \: \: {\boxed{\tt\purple{a^m ÷ a^n = a^{m-n} }}}

Or

 \circ \: \: \: {\boxed{\tt\red{ \dfrac{a^m}{a^n} = a^{m-n} }}}

After substituting values,

 \\ \colon\leadsto{\tt{ 5^{3m+2} ÷ 5^3 = 5^{15} }} \\ \\ \\ \colon\leadsto{\tt{ \cancel{5} ^{3m + 2 - 3} = \cancel{5} ^{15} }} \\ \\ \\ \colon\leadsto{\tt{ 3m + 2 - 3 = 15 }} \\ \\ \\ \colon\leadsto{\tt{ 3m - 1 = 15 }} \\ \\ \\ \colon\leadsto{\tt{ 3m = 15 + 1 }} \\ \\ \\ \colon\leadsto{\tt{ 3m = 16 }} \\ \\ \\ \colon\leadsto{\tt{ m = \cancel{ \dfrac{16}{3} } }} \\ \\ \\ \colon\leadsto{\boxed{\mathfrak\pink{ m = 5.3 }}} \\

Hence,

  • The Value of m is 5.3

 \\

More to Know:

  •  \circ \: {\boxed{\tt\red{ \dfrac{a^m}{a^n} = a^{m-n} }}}

  •  \circ \: {\boxed{\tt\red{ a^m \times a^n = a^{m+n} }}}

  •  \circ \: {\boxed{\tt\red{ (a^m)^n = a^{mn} }}}

  •  \circ \: {\boxed{\tt\red{ (ab)^n = a^nb^n }}}

  •  \circ \: {\boxed{\tt\red{ a^{mn} \neq (a^m)^n }}}
Similar questions