Find the value of m for which the pair of linear equation 2x+3y-7=0 and (m-1)x+(m+1)y=3(m+1) has many solution
Answers
Let’s solve the problem.
From the first equation :
2x + 3y - 7 = 0
3y = 7 -2x
y = (7 - 2x) / 3
From the second equation :
(m - 1) x + (m + 1) y = 3m - 1
(m - 1)x = (3m - 1) - (m + 1)y
x = ((3m -1 ) - (m + 1)y) : (m - 1)
x = (3m - 1 -ym - y) : (m -1 )
Plugging x into the equation above,
y = ( 7 - 2x ) / 3 ………………. (1)
y = ( 7 - 2 ((3m - 1 - ym - y) : (m - 1))) / 3 …………….. (2)
y = ( 7 - ((6m - 2 - 2ym - 2y) : (m - 1))): 3 …………… (3)
y = (((7 (m - 1)) - (6m - 2 - 2ym - 2y)) : (m - 1)) : 3 …………….. (4)
y = ((7m - 7 -6m + 2 + 2ym + 2y) : (m -1 )) : 3 ……………… (5)
y = ((m - 5 + 2y (m + 1)) : (m -1 )) : 3 ……………… (6)
3y = (m - 5 + 2y (m + 1)) : (m - 1) ………………. (7)
3y (m - 1) = m - 5 + 2ym + 2y ……………. (8)
3ym - 3y = m -5 + 2ym + 2y ……………………. (9)
3ym - 2ym - 3y - 2y = m - 5 ……………………. (10)
ym - 5y = m - 5 ………………….. (11)
y (m- 5) = m - 5 ……………………….. (12)
y = 1. Which is the answer. ……………………. (13)
Or, following from (8)
y (3m - 3) = m - 5 + 2y (m + 1) …………………. (9)
y (3m - 3) - y (2m + 2) = (m - 5) ………………………… (10)
y (3m - 3 - 2m - 2) = (m - 5) ………………………….. (11)
y (m - 5 ) = (m - 5) ……………………… (12)
y = 1. Which is the answer. ………………………. (13)
We can see from the last equation (y = 1) that the equation has only one solution, which is y = 1, for whatever the value of m is.
So, the pair of linear equations 2x+3y-7=0 and (m-1)x+(m+1)y=3m-1 has only one solution which is y =1, for whatever the value of m is.
hope that my answer satisfies you. “,