Math, asked by lalansinghsingh57, 6 months ago

Find the value of..

m/n - l/m ÷ a/m - b/n

Attachments:

Answers

Answered by priyel
1

Answer:

 \huge\tt\implies \:  \frac{ {m}^{2} - nl }{an -  bm}   \:  \: \bigstar

Step-by-step explanation:

   \huge \bigstar \huge\bf\frac{\frac{m}{n} -  \frac{l}{m} }{ \frac{a}{m} -  \frac{b}{n}  }  \:  \:  \:  \bigstar \\  \\  \large\tt\implies \frac{ \frac{ {m}^{2}  - nl}{ \cancel{nm} }}{ \frac{an - bm}{ \cancel{mn}} }  \\  \\ \large \tt\implies \:  \frac{ {m}^{2} - nl }{an -  bm}

Answered by tyrbylent
1

Answer:

\frac{m^2 - ln }{an - bm}

Step-by-step explanation:

Start with

Numerator: \frac{m}{n} - \frac{l}{m} = \frac{m^2 - ln}{mn} ,

then

Denominator: \frac{a}{m} - \frac{b}{n} = \frac{an - bm}{mn} .

Let put together both expressions "as a fraction/quotient:

\frac{m^2 - ln}{mn} ÷ \frac{an - bm}{mn} = \frac{m^2 - ln}{mn} × \frac{mn}{an-bm} = \frac{m^2 - ln }{an - bm}

Similar questions