Math, asked by Varshadwivedi05410, 10 months ago


Find the value of mn +no+om, ifm+n+o=12 and m2 +n2+o2=64.​

Answers

Answered by jitekumar4201
2

Answer:

(mn + no + om) = 40

Step-by-step explanation:

Given that-

m + n + o = 12

m^{2}+n^{2}+o^{2} = 64

mn + no + om =?

We know that-

(a+b+c)^{2} = a^{2}+b^{2}+c^{2} + 2(ab+bc+ca)

So, (m+n+o)^{2} = m^{2}+n^{2}+o^{2}+2(mn+no+om)

But, m + n + o = 12 and

m{2}+n^{2}+o^{2} = 64

So, (12)^{2} = 64+2(mn+no+om)

144 = 64 +2(mn+no+om)

144 - 64 = 2(mn + no + om)

80 = 2(mn + no + om)

(mn+no+om) = \dfrac{80}{2}

So, (mn + no + om) = 40

Similar questions