Math, asked by gauravasingh981, 11 months ago

find the value of n
np5 = 6720?​

Answers

Answered by pal69
4

Answer:

nP 5=n! /(n-5)!

6720=n! /(n-5)!

6720=n(n-1) (n-2) (n-3) (n-4) (n-5)! /(n-5)!

6720=n(n-1) (n-2) (n-3) (n-4)

8*7*6*5*4=n(n-1) (n-2) (n-3) (n-4)

8(8-1) (8-2) (8-3) (8-4) =n(n-1) (n-2) (n-3) (n-4)

so, n=8

Answered by pulakmath007
0

The value of n = 8

Given :

\displaystyle \sf{ {}^{n}P_5 = 6720 }

To find :

The value of n

Formula :

\displaystyle \sf{ {}^{n}P_r = \frac{n!}{(n - r)!} }

Solution :

Step 1 of 2 :

Write down the given equation

Here the given equation is

\displaystyle \sf{ {}^{n}P_5 = 6720 }

Step 2 of 2 :

Find the value of n

\displaystyle \sf{ {}^{n}P_5 = 6720 }

\displaystyle \sf{ \implies {}^{n}P_5 = 8 \times 7 \times 6 \times 5 \times 4 }

\displaystyle \sf{ \implies {}^{n}P_5 = \frac{8!}{3!} }

\displaystyle \sf{ \implies {}^{n}P_5 = \frac{8!}{(8 - 5)!} }

\displaystyle \sf{ \implies {}^{n}P_5 = {}^{8}P_5 } \: \: \bigg[ \: \because \:\displaystyle \sf{ {}^{n}P_r = \frac{n!}{(n - r)!} } \: \bigg]

\displaystyle \sf{ \implies n = 8}

Hence the required value of n = 8

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. If 7. 5pr = 7pr – 1, then find r.(question based on permutation and combination chapter)

https://brainly.in/question/26877723

2. If nPr = 3024 and nCr = 126 then find n and r.

https://brainly.in/question/29044585

Similar questions