Math, asked by abhianilkumar03, 1 year ago

find the value of n so that [a^(n+1) + b^(n+1)]/[a^n + b^n] is the GM between a and b​

Answers

Answered by sprao53413
4

Answer:

The G. M between a and b isv(ab)

a^(n+1)+b^(n+1)/(a^n+b^n)=v(ab)then n=-1/2

Answered by Anonymous
28

   \purple{\underline{ \huge{\sf \fbox{Solution : \: }}}}

We know that , the geometric mean of any two positive numbers a and b is given by √ab

Thus ,

  \large{\star \: } \mathtt{ \fbox{ \frac{ {a}^{(n + 1)} \:  +  \:  {b}^{(n + 1)}  }{ {a}^{n}   \: + \:   {b}^{n} }  =  \sqrt{ab} }}

Squaring both sides , we get

 \sf \hookrightarrow \frac{ {a}^{(n + 1)} \:  +  \:  {b}^{(n + 1)}  }{ {a}^{(n)}   \: + \:   {b}^{(n)} }  =  \sqrt{ab} \\  \\ \sf \hookrightarrow  {({\frac{ {a}^{(n + 1)} \:  +  \:  {b}^{(n + 1)}  }{ {a}^{(n)}   \: + \:   {b}^{(n)} }})}^{2}  = ab \\  \\\sf \hookrightarrow {\frac{  {({a}^{(n + 1)} \:  +  \:  {b}^{(n + 1)}  )}^{2}  }{  {({a}^{(n)}   \: + \:   {b}^{(n)} )}^{2} }} = ab \\  \\\sf \hookrightarrow  \frac{{ {a}^{(n + 1)} }^{2}  +  { {(b)}^{(n + 1)} }^{2}  + 2 {(a)}^{(n + 1)}  {(b)}^{(n + 1)}}{{ {a}^{(n)} }^{2}  +  { {b}^{(n)} }^{2}  + 2 {a}^{(n)}  {b}^{(n)} }    =  ab \\  \\\sf \hookrightarrow  \frac{ {a}^{(2n + 2)}  +  {b}^{(2n + 2)} + 2 {a}^{(n + 1)}   {b}^{(n + 1)} }{ {a}^{(2n)}  +  {b}^{(2n)}  + 2 {a}^{(n)}  {b}^{(n)} } = ab \\   \\ \sf \hookrightarrow {a}^{(2n + 2)}  +  {b}^{(2n + 2)} + 2 {a}^{(n + 1)}   {b}^{(n + 1)}  = ab( {a}^{(2n)}  +  {b}^{(2n)}  + 2 {a}^{(n)}  {b}^{(n)} ) \\ \\\sf \hookrightarrow {a}^{(2n + 2)}  +  {b}^{(2n + 2)} + 2 {a}^{(n + 1)}   {b}^{(n + 1)}  =  {a}^{(2n + 1)} b + a {b}^{(2n + 1)}  + 2 {a}^{(n + 1)}  {b}^{(n + 1)}  \\  \\\sf \hookrightarrow {a}^{(2n + 2)}  +  {b}^{(2n + 2)}  =  {a}^{(2n + 1)} b + a {b}^{(2n + 1)}   \\  \\ \sf \hookrightarrow {a}^{(2n + 2)}   -  {a}^{(2n + 1)} b  = a {b}^{(2n + 1)}  - {b}^{(2n + 2)}  \\  \\\sf \hookrightarrow  {a}^{(2n + 1)} (a - b) =  {b}^{(2n + 1)} (a - b) \\  \\ \sf \hookrightarrow {a}^{(2n + 1)} =   {b}^{(2n + 1)} \\  \\  \sf \hookrightarrow {(\frac{a}{b} )}^{(2n + 1)}  = 1 \\   \\\sf \hookrightarrow  {( \frac{a}{b})}^{(2n + 1)}  =   { (\frac{a}{b} )}^{(0)}

By comparing the powers , we get

 \sf \hookrightarrow 2n + 1 = 0 \\  \\ \sf \hookrightarrow n =  -  \frac{1}{2}

Hence , the required value of n is -1/2

Similar questions