Math, asked by abhishekkashyap0701, 1 year ago

Find the value of of x, y, if x^5+y^5=275 and x+y = 5....

Answers

Answered by TeenTitansGo
14

x {}^{5}  +  {y}^{5}  = 275 \\  \\  {x}^{5}  = 275 -  {y}^{5}  \\  \\ x =  \sqrt[5]{275 -  {y}^{5} }  \:   \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  -  -  - ( \: 1 \: )




Now we have got the value of x in terms of y, then putting the value of x in terms of y in [ x + y = 5 ]


x + y = 5 \\  \\  \sqrt[5]{275 -  {y}^{5} }  + y = 5 \\  \\  \sqrt[5]{275 +  {y}^{5} }  = 5 - y



Making 5 as the power on both sides,


( \sqrt[5]{275 -  {y}^{5} } ) {}^{5}   = (5 - y) {}^{5}  \\  \\ ( \sqrt{275 -  {y}^{5} } )  {}^{ \frac{1}{5} \times 5 } = (5 - y) {}^{2} (5 - y) {}^{3}  \\  \\  275 -  {y}^{5} = (25 +  {y}^{2}  - 10y)( -  {y}^{3}  + 15 {y}^{2}  - 75y + 125) \\  \\ 275 -  {y}^{5}   = 3125 - 1250y + 125y^{2} - 1875y + 750y^{2}- 75y^{3}+ 375y^{2}- 150y^{3} + 15y^{4} - 25x^{3} + 10x^{4} - x^{5}


combining and adding like terms,


 275 - y^{5}=3125 - 3125y + 1250y^{2} - 250y^{3} + 25y^{4} - y^{5}


275 - 3125 + 3125y - 1250y² + 250y³ - 25y⁴ = 0

- 2850 + 3125y - 1250y² + 250y³ - 25y⁴ = 0

- 25[ 114 - 125y + 50y² - 10y³ + y⁴ ] = 0

y⁴ - 10y³ + 50y² - 125y + 114 = 0

y⁴ - 2y³ - 8y³ + 16y² + 34y² - 125y + 114 = 0

y³( y - 2 ) - 8y²( y - 2 ) + 34y² - 68y - 57y + 114 = 0

y³( y - 2 ) - 8y²( y - 2 ) + 34y( y - 2 ) - 57( y - 2 ) = 0

( y - 2 )( y³ - 8y² + 34y - 57 ) = 0

( y - 2 )( y - 3 )( y² - 5x + 19 ) = 0




Thus,
value of y is either 2 or 3 .



Putting the value(s) of y in ( 1 ) ,

x =  \sqrt[5]{275 - ( {2)}^{2} }  \:  \:  \:  \:  \:  \:  \: or \:  \:  \:  \:  \:  \:  \:  \:  x = \sqrt[5]{275 -  {(3)}^{2} }  \\  \\  \\  x =  \sqrt[5]{271}  \:  \:  \:  \: \:  \:  \: or \:  \:  \:  \:  \:  \:  \:  \: x =  \sqrt[5]{266}

x » 3.06 or x » 3.05





Therefore,
value of x is 3.06 or 3.05
value of y is 2 because if we add 3.05 with 3 ,we will the result which will be < 5 ,so :-



\textbf{Value of x is 3.05} \\\textbf{<br />Value of y is 2 }




TeenTitansGo: :-)
Answered by AmishaBhateja
0

Step-by-step explanation:

here is the solution to the given problem

mark as brainalist

Attachments:
Similar questions