Math, asked by Poorva9556, 7 months ago

Find the value of p and q for which following system of linear equation have infinite number of solution 2x-3y=7;(p+q)x-(p+q-3)y=4p+q

Answers

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

Given pair of linear equation is

2x - 3y = 7

and

(p + q)x - (p + q - 3)y = 4p + q

Further it is given that,

System of Linear Equations have infinitely many solutions.

We know,

The pair of linear equations a₁x + b₁y + c₁ = 0 and a₂x + b₂y + c₂ = 0 have

\boxed{ \rm \: infinite \: solutions \: when  \: \rm \dfrac{a_1}{a_2}=\dfrac{b_1}{b_2} = \dfrac{c_1}{c_2}}

So, on comparing the given two equations with a₁x + b₁y + c₁ = 0 and a₂x + b₂y + c₂ = 0, we get  

  • a₁ = 2

  • b₁ = - 3

  • c₁ = 7

  • a₂ = p + q

  • b₂ = - (p + q - 3)

  • c₂ = 4p + q

So, on substituting the values in

\rm :\longmapsto\: \dfrac{a_1}{a_2}=\dfrac{b_1}{b_2} = \dfrac{c_1}{c_2}

\rm :\longmapsto\:\dfrac{2}{p + q}  = \dfrac{ - 3}{ - (p + q - 3)}  = \dfrac{7}{4p + q}

can be rewritten as

\rm :\longmapsto\:\dfrac{2}{p + q}  = \dfrac{ 3}{(p + q - 3)}  = \dfrac{7}{4p + q}

Taking first and second member, we have

\rm :\longmapsto\:\dfrac{2}{p + q}  = \dfrac{ 3}{(p + q - 3)}

\rm :\longmapsto\:2p + 2q - 6 = 3p + 3q

\rm :\longmapsto\:p + q  = -  \: 6  -  -  - (3)

Taking first and third member,

\rm :\longmapsto\:\dfrac{2}{p + q}  = \dfrac{7}{4p + q}

\rm :\longmapsto\:8p + 2q = 7p + 7q

\rm :\longmapsto\:8p - 7p =7q - 2q

\rm :\longmapsto\:p = 5q -  -  - (4)

Substituting the value of p in equation (3), we get

\rm :\longmapsto\:5q + q =  - 6

\rm :\longmapsto\:6q=  - 6

\bf :\longmapsto\:q=  - 1

On substituting the value of q in equation (4), we get

\rm :\longmapsto\:p = 5( - 1)

\bf :\longmapsto\:p =  - 5

 \red{\begin{gathered}\begin{gathered}\bf\: Hence \: -\begin{cases} &\sf{p \:  =  \:  -  \: 5} \\ &\sf{q \:  =  \:  -  \: 1} \end{cases}\end{gathered}\end{gathered}}

Additional Information :-

The pair of linear equations a₁x + b₁y + c₁ = 0 and a₂x + b₂y + c₂ = 0 is

1. Consistent having unique solution iff

\rm :\longmapsto\: \dfrac{a_1}{a_2} \:  \ne \: \dfrac{b_1}{b_2}

2. Inconsistent having no solution iff

\rm :\longmapsto\: \dfrac{a_1}{a_2}=\dfrac{b_1}{b_2} \:  \ne \:  \dfrac{c_1}{c_2}

Similar questions