find the value of p and q such that (x-1) and (x+2) are factors of and factories completely
Answers
Answered by
1
Answer:
p = 7; q = - 18; (x - 1)(x + 2)(x + 9)
Step-by-step explanation:
If (x - 1) is factor of f(x) = x³ + 10x² + px + q, then
f(1) = 1³ + 10(1)² + p(1)+ q = 0 ⇒ p + q = - 11
If (x + 2) is factor of f(x) = x³ + 10x² + px + q, then
f(- 2) = (- 2)³ + 10(- 2)² + p(- 2) + q = 0
- 8 + 40 - 2p + q = 0 ⇒ q - 2p = - 32
(1) - (2)
3p = 21 ⇒ p = 7
q + 7 = - 11 ⇒ q = - 18
f(x) = x³ + 10x² + 7x - 18
(x - 1)(x + 2) = x² + x - 2
(x³ + 10x² + 7x - 18) ÷ (x² + x - 2) = (x + 9)
f(x) = x³ + 10x² + 7x - 18 = (x - 1)(x + 2)(x + 9)
Similar questions