Math, asked by nisreensabir1103, 11 months ago

FIND THE VALUE OF P, FOR WHICH ONE ROT OF THE QUADRATIC EQUATION px^2-14x+8 is 6 times the other

Answers

Answered by azizalasha
0

Answer:

4

Step-by-step explanation:

roots be a , 6a

7a = 14/p

6a² = 8/p

6a/7 = 3/7

a = 1/2 , 6a = 3

p = 14/7a = 2/a = 4

Answered by brokendreams
0

Step-by-step explanation:

Given : A quadratic equation px^{2} -14x+8 whose first root is  6 times other.

To find : The value of p.

Formula used : If we have standard quadratic equation then sum and product of roots are,

Sum of roots =\frac{-b}{a}                          

Product of roots =\frac{c}{a}

a is the coefficient of x^{2} , b is the coefficient of x  and c is the constant.

  • Calculation for roots

First of all Let us take two roots of given quadratic equation by using given data,

First root  =y

Second root  =6y

So the sum of roots =y+6y                   and       product of roots =y*6y

                                =7y                                                                    =6y^{2}    

we have quadratic equation and we can equate it with zero,

⇒  px^{2} -14x+8=0

Now the sum and products of roots by using coefficients,

Sum of roots =\frac{-b}{a}                             Product of roots =\frac{c}{a}

                      =\frac{-(-14)}{p}                                                  =\frac{8}{p}

                      =\frac{14}{p}                                                        =\frac{8}{p}

As we know sum and product of roots by coefficients and roots should be same so we can equate them as,

Sum of roots =\frac{14}{p}                               Product of roots  =\frac{8}{p}

        7y= \frac{14}{p}                                                        6y^{2} =\frac{8}{p}

taking  \frac{1}{p}   remain at R.H.S and other terms to L.H.S in both sum and product of roots,

          \frac{7y}{14} =\frac{1}{p}                                                            \frac{6y^{2} }{8} =\frac{1}{p}

          \frac{y}{2} =\frac{1}{p}      --(1)                                                   \frac{3y^{2} }{4} =\frac{1}{p}   --(2)

R.H.S of both equations (1) and (2) are same hence the L.H.S of equations are also same so by equating equations (1) and (2),

⇒  \frac{y}{2} =\frac{3y^{2} }{4}

taking similar terms at same side,

⇒  \frac{4}{2} =\frac{3y^{2} }{y}

⇒  2=3y

⇒  y=\frac{2}{3}

we get the first root is \frac{2}{3} and

second root =6*y

                     =6*\frac{2}{3}

                     =4

So the roots of equation are \frac{2}{3},4.

  • Calculation for p,

We have the value of y is

⇒  y=\frac{2}{3}

by putting this y in equation (1) we get the value of p,

⇒  \frac{\frac{2}{3} }{2} =\frac{1}{p}  

⇒  \frac{2 }{2*3} =\frac{1}{p}

\frac{1 }{3} =\frac{1}{p}

doing cross multiplication,

⇒  p=3

we get the value of p is 3.

So the quadratic equation by putting the value of p, is,

⇒  3x^{2} -14x+8.                    

Similar questions