Find the value of p for which the points (p+1 2p-2) (p-1 p) and (p-3 2p-6) are collinear
Answers
Answer:
For the points to be collinear , p = 4
Step-by-step explanation:
Given ,
Points = ( p+1 , 2p-2 ), ( p-1 , p) and (p-3 , 2p-6)
For the given points ( x₁ , y₁ ) , ( x₂ , y₂ ) and ( x₃ , y₃) to be collinear then
[ x₁ ( y₂ - y₃ ) + x₂( y₃ - y₁ )+ x₃( y₁- y₂ )] = 0
Here,
x₁ = p + 1 y₁ = 2p - 2
x₂ = p - 1 y₂ = p
x₃ = p - 3 y₃ = 2p - 6
Substituting the values in the formula ,
( p + 1 ) ( p - ( 2p - 6 ) ) + ( p - 1 ) ( 2p - 6 - ( 2p - 2 ) ) + ( p - 3 ) ( 2p - 2 - ( p ) ) = 0
( p + 1 ) ( p - 2p + 6 ) ) + ( p - 1 ) ( 2p - 6 - 2p + 2 ) ) + ( p - 3 ) ( 2p - 2 - p ) = 0
( p + 1 ) ( -p + 6 ) + ( p - 1 ) ( -4 ) + ( p - 3 ) ( p - 2 ) = 0
- p² - p + 6p + 6 - 4p + 4 + p² - 3p - 2p + 6 = 0
- 4p + 16 = 0
4p = 16
Dividing both the sides by 4
4p / 4 = 16 / 4
p = 4
Hence,
For the points to be collinear , p = 4