Math, asked by krishukhosla, 9 months ago

Find the value of p if 3cosec2A(1+COSA)(1 - COSA) =p​

Answers

Answered by pulakmath007
39

\displaystyle\huge\red{\underline{\underline{Solution}}}

FORMULA TO BE IMPLEMENTED

 1. \:  \:  \: \sf{ (1 -   { \cos}^{2}  \theta) = { \sin}^{2}  \theta \:  }

2. \:  \sf{ \cosec \theta \:  \times  \sin \theta \:  = 1  \: }

GIVEN

 \sf{ 3  \: { \cosec}^{2}A(1 +  \cos A)   (1  -   \cos A)  = p\: }

TO DETERMINE

The value of p

CALCULATION

 \sf{ 3  \: { \cosec}^{2}A(1 +  \cos A)   (1  -   \cos A)  = p\: }

 \implies \:  \sf{ 3  \: { \cosec}^{2}A (1  -   {\cos}^{2}  A)  = p\: }

 \implies \:  \sf{ 3  \: { \cosec}^{2}A  \times   {\sin}^{2}  A = p\: }

 \implies \:  \sf{ 3  \: {({ \cosec}A  \times   {\sin}  A)}^{2} = p\: }

  \displaystyle \: \implies \:  \sf{ 3  \: { \bigg( \frac{1}{{\sin}  A}   \times   {\sin}A  \bigg)}^{2} = p\: }

  \displaystyle \: \implies \:  \sf{3 \times  {(1)}^{2} =   p\: }

  \displaystyle \: \implies \:  \sf{  p\:  = 3}

RESULT

 \boxed{ \:  \displaystyle \:  \:  \sf{  p = 3 \: \: }  \: }

━━━━━━━━━━━━━━━━

LEARN MORE FROM BRAINLY

Find the value of

(1+tan13)(1+tan32)+(1+tan12)(1+tan33)

https://brainly.in/question/23306292

Answered by mantu9000
0

We have:

3\csc^2A(1+\cos A)(1-\cos A)=p

We have to find the value of p.

Solution:

3\csc^2A(1+\cos A)(1-\cos A)=p

Using the algebraic identity:

(a + b)(a - b) = a^2-b^2

3\csc^2A)(1-\cos^2 A)=p

Using the trigonometric identity:

\sin^2 A+\cos^2 A=1

\sin^2 A=1-\cos^2 A

3\csc^2A\sin^2 A=p

3(\csc A\sin A)=p

3(1)=p

⇒ p = 3

Thus, the value of "p is equal to 3".

Similar questions