Find the value of p in quadratic equation (3+p)c2+(p+1)c+p=0 has equal roots
Answers
Answered by
1
Answer:
( - 5 ± √28 )/3
Step-by-step explanation:
For an quadratic equation to have equal roots, discriminant must be 0.
For standard equation, discriminant = b^2 - 4ac.
Here,
a = (3 + p) ; b = (p + 1), c = p
thus,
discriminant = 0
⇒ (p + 1)² - 4(p)(p + 3) = 0
⇒ p² + 1 + 2p - 4p² - 12p = 0
⇒ - 3p² - 10p + 1 =0
⇒ 3p² + 10p - 1 = 0
Using quadratic formula:
⇒ p = [ -10±√10² - 4(-1)(3)]/2(3)
= [- 10 ± √(100 + 12)]/6
= [ - 10 ± √112 ]/6
= [ - 10 ± 2√28]/6
= ( - 5 ± √28 )/3
Similar questions